

SARS-CoV-2 Antigen Rapid Test

Package Insert

A rapid test for the aualitative detection of SARS-CoV-2 nucleocapsid antigens in nasal and nasopharynaeal swab specimens. For professional in vitro diagnostic use only.

INTENDED USE

The SARS-CoV-2 Antigen Rapid Test is a lateral flow chromatographic immunoassay for the qualitative detection the nucleocapsid protein antigen from SARS-CoV-2 in nasal and nasopharvngeal swab specimens directly from individuals who are suspected of COVID-19 by their healthcare provider within the first seven days of the onset of symptoms. The SARSCoV- 2 Antigen Rapid Test can also be used for testing specimens from asymptomatic individuals. The SARS-CoV-2 Antigen Rapid Test does not differentiate between SARS-CoV and SARS-CoV-2. Results are for the identification of SARS-CoV-2 nucleocapsid antigen. This antigen is generally detectable in upper respiratory samples during the acute phase of infec-tion. Positive results indicate the presence of viral antigens, but clinical correlation with patient history and other diagnostic information is necessary to determine infection status. Positive results do not rule out bacterial infection or coinfection with other viruses. The agent detected may not be the definite cause of disease.

Negative results, from patients with symptom beyond seven days, should be treated as presumptive and confirmed with a molecular assay, if necessary, for patient management, Negative results do not rule out SARSCoV-2 infection and should not be used as the sole basis for treatment or patient management decisions, including infection control decisions. Negative results should be considered in the context of a patient's recent exposures, history and the presence of clinical signs and symptoms consistent with COVID-19.

The SARS-CoV-2 Antigen Rapid Test is intended for use by trained clinical laboratory personnel and individuals trained in point of care settings. SARS-CoV-2 Antigen Rapid Test is intended to be used as an aid in the diagnosis of SARS-CoV-2 infection.

SUMMARY

The novel coronaviruses belong to the ß genus.1 COVID-19 is an acute respiratory infectious disease. People are generally susceptible. Currently, the patients infected by the novel coronavirus are the main source of infection; asymptomatic infected people can also be an infectious source. Based on the current epidemiological investigation, the incubation period is 1 to 14 days, mostly 3 to 7 days. The main manifestations include fever, fatigue and dry cough, Nasal congestion, runny nose, sore throat, myalgia and diarrhea are found in a few cases.

PRINCIPLE

The SARS-CoV-2 Antigen Rapid Test is a qualitative membrane based chromatographic immunoassay for the qualitative detection of the nucleocapsid protein antigen from SARS-CoV-2 in human nasal and nasopharyngeal swab specimens.

When specimens are processed and added to the test cassette, SARS-CoV-2 antigens, if present in the specimen, will react with the anti-SARS-CoV-2 antibody-coated particles, which have been pre-coated on the test strip. The mixture then migrates upward on the membrane by capillary action. The antigen-conjugate complexes migrate across the test strip to the reaction area and are captured by a line of antibody bound on the membrane. Test results are interpreted visually at 15-30 minutes based on the presence or absence of visually colored lines. To serve as a procedure control, a colored line will always appear in the control line region indicating that proper volume of specimen has been added and membrane wicking has occurred.

The test cassette contains anti-SARS-CoV-2 antibodies. The positive control swab contains SARS-CoV-2 recombinant antigen pre-coated on the swab.

PRECAUTIONS

- · For professional in vitro diagnostic use only. Do not use after the expiration date.
- Do not eat, drink, or smoke in the area where the specimens or kits are handled.
- . Do not use the test if the pouch is damaged.
- · Handle all specimens as if they contain infectious agents. Observe established precautions against biological hazards throughout testing and follow the standard procedures for proper disposal of specimens.
- · Wear protective clothing such as laboratory coats, disposable gloves, mask and eye protection when specimens are being
- . The used test should be discarded according to local regulations. The used test should be considered potentially infectious and be discarded according to local regulations.
- Humidity and temperature can adversely affect results.
- . This package insert must be read completely before performing the test. Failure to follow directions in insert may yield inaccurate test results.
- . The test line for a high viral load sample may become visible within 15 minutes, or as soon as the sample passes the test
- The test line for a low viral load sample may become visible within 30 minutes.

STORAGE AND STABILITY

- The kit can be stored at temperatures between 2 30 °C.
- . The test is stable until the expiration date printed on the sealed pouch.
- . The test must remain in the sealed pouch until use.
- DO NOT FREEZE.
- . Do not use after the expiration date.

MATERIALS

Materials Provided

- . Test Cassettes
- Extraction Buffer Tubes
- · Positive Control Swab
- Negative Control Swab Disposable Swabs*
- · Package Insert

* The Disposable Swabs are produced by another manufacturer. Either Nasal swabs or nasopharynaeal swabs are supplied in the kit depending on the package you ordered.

Materials Required But Not Provided

- · Personal Protective Equipment
- Timer

SPECIMEN COLLECTION AND PREPARATION

The SARS-CoV-2 Antigen Rapid Test can be performed using nasal and nasopharyngeal swab specimens. Testing should be performed immediately after specimen collection, or at most within one (1) hour after specimen collection, if stored at room temperature (15-30°C).

specimen collection:

SPECIMEN COLLECTION GUIDE - NASAL SWABS

Please follow the instructional guide for

An anterior nasal swab sample can be collected by a medical professional or by an individual performing a

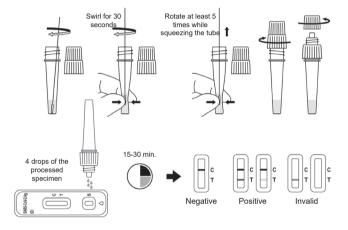
Specimen collection, on children under 12 years of age, should be performed by a medical professional. Children aged 12 to 17 should be under adult supervision if they perform the anterior nasal swab by themselves. Adults aged 18 and over can perform the anterior nasal swab by themselves. Please follow your local guidelines for specimen collection by children.

MEDICAL PROFESSIONAL COLLECTION

How to collect an anterior nasal swab sample:

- 1. Carefully insert one of the Disposable Nasal Swabs, provided with your kit, into one nostril. Using gentle rotation, push the swab less than 2.5 cm (1 inch) from the edge of the nostril.
- 2. Rotate the swab 5 times against the mucosa inside the nostril to ensure sufficient specimen collection

SELF COLLECTION


- 3. Using the same swab, repeat the process in the other nostril to ensure that an adequate amount of sample is collected from both nasal cavities.
- 4. Withdraw the swab from the nasal cavity. The specimen is now ready for preparation using the extraction buffer tubes.

DIRECTIONS FOR USE

Allow the test and extraction buffer to reach room temperature (15-30 °C) prior to testing.

- 1. Use an extraction buffer tube for each specimen to be tested and label each tube appropriately.
- 2. Unscrew the dropper cap from the extraction buffer tube without squeezing.
- 3. Insert the swab into the tube and swirl it for 30 seconds. Then rotate the swab at least 5 times while squeezing the sides of the tube. Take care to avoid splashing contents out of the tube.
- 4. Remove the swab while squeezing the sides of the tube to extract the liquid from the swab.
- 5. Screw the dropper cap firmly onto the extraction buffer tube containing the sample. Mix thoroughly by swirling or flicking the bottom of the tube.
- 6. Remove the test cassette from the foil pouch and use it as soon as possible.
- 7. Place the test cassette on a flat and clean surface.
- 8. Add the processed specimen to the sample well of the test cassette.
- a. Unscrew the small cap from the dropper tip.
- b. Invert the extraction buffer tube with the dropper tip pointing downwards and hold it vertically.
- c. Gently squeeze the tube, dispensing 4 drops of the processed specimen into the sample well.
- 9. Wait for the colored line(s) to appear. The result should be read at 15-30 minutes. Do not read the result after 30 minutes.

INTERPRETATION OF RESULTS (Please refer to the illustration above)

NEGATIVE: Only one colored control line appears in the control region (C). No apparent colored line appears in the test line region (T). This means that no SARS-CoV-2 antigen was detected.

POSITIVE:* Two distinct colored lines appear. One line in the control line region (C) and the other line in the test line region (T). This means that the presence of SARS-CoV-2 antigen was detected.

*NOTE: The intensity of the color in the test line (T) may vary depending on the level of the SARS-CoV-2 antigen present in the specimen. Therefore, any shade of color in the test line region (T) should be considered positive.

appear, Insufficient specimen volume or incorrect operation are the most likely reasons for control line failure. Review the procedure and repeat the test with a new test cassette. If the problem persists, discontinue using the test kit immediately and contact your local distributor.

INVALID: Control line fails to

OUALITY CONTROL

Internal procedural controls are included in the test. A colored line appearing in the control line region (C) is an internal procedural control. It confirms sufficient specimen volume and correct procedural technique. Positive and Negative control swabs are supplied with each kit. These control swabs should be used to ensure that the test cassette and that the test procedure is performed correctly. Follow the "DIRECTIONS FOR USE" section to perform the control test.

The control swabs can be tested under any of the following circumstances:

- 1. When new lot of tests are used and/or when a new operator performs the test.
- 2. At periodic intervals as dictated by local requirements, and/or by the user's Quality Control procedures.

LIMITATIONS

- 1. The SARS-CoV-2 Antigen Rapid Test is for in vitro diagnostic use only. The test should be used for the detection of SARS-CoV-2 antigens in nasal and nasophanyngeal swab specimens only. The intensity of the test line does not necessarily correlate to SARS-CoV-2 viral litter in the specimen.
- 2. Specimens should be tested as quickly as possible after specimen collection and at most within the hour following collection.
- 3. Use of viral transport media may result in decreased test sensitivity.
- 4. A false-negative test may result if the level of antigen in a sample is below the detection limit of the test or if the sample was collected incorrectly.
- 5. Test results should be correlated with other clinical data available to the physician.
- 6. A positive test result does not rule out co-infections with other pathogens.
- 7. A positive test result does not differentiate between SARS-CoV and SARS-CoV-2.
- 8. A negative test result is not intended to rule out other viral or bacterial infections.
- 9. A negative result, from a patient with symptom onset beyond seven days, should be treated as presumptive and confirmed with a molecular assay, if necessary, for clinical management. (If the differentiation of specific SARS viruses and strains is needed, additional testing is required.)

PERFORMANCE CHARACTERISTICS

Clinical Sensitivity, Specificity and Accuracy

The performance of SARS-CoV-2 Antigen Rapid Test was established with 605 nasal swabs collected from individual symptomatic patients who were suspected of COVID-19. The results show that the relative sensitivity and the relative specificity are as follows:

Clinical Performance for SARS-CoV-2 Antigen Rapid Test

Meth	od		RT-PCR	Total	
	Results	Negative	Positive	Results	
SARS-CoV-2 Antigen Rapid Test	Negative	433	5	438	
,	Positive	2	165	167	
Total Results		435	170	605	

Relative Sensitivity: 97.1% (93.1%-98.9%)* Relative Specificity: 99.5% (98.2%-99.9%)* Accuracy: 98.8% (97.6%-99.5%)* *95% Confidence Intervals

Stratification of the positive samples post onset of symptoms between 0-3 days has a positive percent agreement (PPA) of 98.8% (n=81) and 47 days has a PPA of 96.8% (n=62). Positive samples with Ct value \le 33 has a higher positive percent agreement (PPA) of 98.7% (n=153).

LIMIT OF DETECTION (LOD)

The LOD of SARS-CoV-2 Antigen Rapid Test was established using limiting dilutions of an inactivated viral sample. The viral sample was spiked with negative human nasal and nasophayngeal sample pool into a seral of concentrations. Each level was tested for 30 replicates. The results show that the LOD is 1.6*102 TCIDSO/mL.

Cross-reactivity was evaluated by testing a panel of related pathogens and microorganisms that are likely to be present in the nasal cavity. Each organism and virus were tested in the absence or presence of heatinactivated SARS-CoV-2 virus at low positive level. No cross-reactivity or interference was observed with the following microorganisms when tested at the concentration presented in the table below. The SARS-CoV-2 Antigen Rapid Test does not differentiate between SARS-CoV and SARS-CoV-2.

	Potential Cross-Reactant	Test Concentration	Cross-Reactivity (in the absence of SARS-CoV-2 virus)	Interference (in the presence of SARS-CoV-2 virus)
	Adenovirus	1.14 x 10° TCID _{so} /mL	No 3/3 negative	No 3/3 positive
ŀ	Enterovirus	9.50 x 10° TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
	Human coronavirus 229E	1.04 x 10° TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
Ī	Human coronavirus OC43	2.63 x 10° TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
Ì	Human coronavirus NL63	1.0 x 10 ⁵ TCID ₅₀ /mL	No 3/3 negative	No 3/3 positive
Ì	Human Metapneumovirus	1.25 x 10 ⁵ TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
Ì	MERS-coronavirus	7.90 x 10 ⁵ TCID _{so} /mL	No 3/3 negative	No 3/3 positive
	Influenza A	1.04 x 10 ^s TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
Virus	Influenza B	1.04 x 10 ⁵ TCID ₅₀ /mL	No 3/3 negative	No 3/3 positive
Ì	Parainfluenza virus 1	1.25 x 10° TCID _{so} /mL	No 3/3 negative	No 3/3 positive
Ì	Parainfluenza virus 2	3.78 x 10° TCID _{s0} /mL	No 3/3 negative	No 3/3 positive
Ì	Parainfluenza virus 3	1.0 x 10 ⁵ TCID _{s0} /mL	No 3/3 negative	No 3/3 positive
Ì	Parainfluenza virus 4	2.88 x 10 ⁶ TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
Ì	Respiratory syncytial virus	3.15 x 10° TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
	Rhinovirus	3.15 x 10° TCID _{ss} /mL	No 3/3 negative	No 3/3 positive
	Human coronavirus-HKU1	1 x 10 ^s copies/mL	No 3/3 negative	No 3/3 positive
7	Bordetella pertussis	2.83 x 10° CFU/mL	No 3/3 negative	No 3/3 positive
ŀ	Chlamydia trachomatis	3.13 x 10 ^s CFU/mL	No 3/3 negative	No 3/3 positive
Ì	Haemophilus influenza	1.36 x 10 ^s CFU/mL	No 3/3 negative	No 3/3 positive
Ì	Legionella pneumophila	4.08 x 10° CFU/mL	No 3/3 negative	No 3/3 positive
Ì	Mycobacterium tuberculosis	1.72 x 10 ⁷ CFU/mL	No 3/3 negative	No 3/3 positive
Ì	Mycoplasma pneumoniae	7.90 x 10 ⁷ CFU/mL	No 3/3 negative	No 3/3 positive
Bacteria	Staphylococcus aureus	1.38 x 10 ⁷ CFU/mL	No 3/3 negative	No 3/3 positive
28	Staphylococcus epidermidis	2.32 x 10° CFU/mL	No 3/3 negative	No 3/3 positive
ŀ	Streptococcus pneumoniae	1.04 x 10 ^s CFU/mL	No 3/3 negative	No 3/3 positive
	Streptococcus pyogenes	4.10 x 10 ^s CFU/mL	No 3/3 negative	No 3/3 positive
	Pneumocystis jiroveciiS. cerevisiae	8.63 x 10 ⁷ CFU/mL	No 3/3 negative	No 3/3 positive
	Pseudomonas aeruginosa	1.87 x 10 ^s CFU/mL	No 3/3 negative	No 3/3 positive
	Chlamydia pneumoniae	1×10° IFU/ml	No 3/3 negative	No 3/3 positive
ast	Candida albicans	1.57 x 10 ^s CFU/mL	No 3/3 negative	No 3/3 positive
_	Pooled human nasal wa		3/3 negative No	3/3 positive No

The following substances, naturally present in respiratory specimens or that may be artificially introduced into the nasal cavity or nasopharynx, were evaluated. Each substance was tested in the absence or presence of SARS-CoV-2 virus at low positive level. The final concentration of the substances tested are listed below and were found not to affect test performance.

Results

Interfering Substance	Active Ingredient	Concentration	(in the absence of SARS-CoV-2 virus)	(in the presence of SARS-CoV-2 virus)	
	Biotin	2.4 mg/mL	3/3 negative	3/3 positive	
Endogenous	Mucin	0.5% w/v	3/3 negative	3/3 positive	
	Whole Blood	4% v/v	3/3 negative	3/3 positive	
Chloraseptic Max Sore Throat Lozenges	Oxymetazoline	15% v/v	3/3 negative	3/3 positive	
CVS Health Fluticasone Propionate Nasal Spray	Homeopathic	1:10 Dilution	3/3 negative	3/3 positive	
Equate Fast-Acting Nasal Spray	Menthol, Benzocaine	1.5 mg/mL	3/3 negative	3/3 positive	
Equate Sore Throat Phenol Oral Anesthetic Spray	Fluticasone propionate	5% v/v	3/3 negative	3/3 positive	
Original Extra Strong Menthol Cough Lozenges	Phenylephrine	15% v/v	3/3 negative	3/3 positive	
NasalCrom Nasal Spray	Phenol	15% v/v	3/3 negative	3/3 positive	
NeilMed NasoGel for Dry Noses	Menthol	1.5 mg/mL	3/3 negative	3/3 positive	
Throat Lozenge	Cromolyn	15% v/v	3/3 negative	3/3 positive	
NeilMed NasoGel for Dry Noses	Sodium Hyaluronate	5% v/v	3/3 negative	3/3 positive	
Halsdragee	Dyclonine Hydrochloride	1.5mg/mL	3/3 negative	3/3 positive	
Zicam Cold Remedy	Galphimia glauca, Luffa operculata, Sabadilla	5% v/v	3/3 negative	3/3 positive	
Antibiotic	Mupirocin	10 mg/mL	3/3 negative	3/3 positive	
Tamiflu	Oseltamivir Phosphate	5 mg/mL	3/3 negative	3/3 positive	
Antibiotic	Tobramycin	4 μg/mL	3/3 negative	3/3 positive	
Mometasone Furoate Nasal Spray	Mometasone Furoate	5%v/v	3/3 negative	3/3 positive	
Physiological Seawater Nasal Cleaner	NaCl	15%v/v	3/3 negative	3/3 positive	

PRECISION

Intra-Assav

Within-run precision was determined using 60 replicates of specimens: negative control and SARS-CoV-2 antigen positive controls. The specimens were correctly identified >99% of the time.

nterassav

Between-run precision was determined using 60 independent assays on the same specimen: negative specimen and SARS-CoV-2 antigen positive specimen. Three different lots of the SARS-CoV-2 Antigen Rapid Test were tested using these specimens. The specimens were correctly identified >99% of the time.

BIBLIOGRAPHY

- 1. Shuo Su, Gary Wong, Weifeng Shi, et al. Epidemiology, Genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, June 2016, vol. 24, No. 6: 490-502
- 2. Susan R. Weiss, Julian L. Leibowitz, Coronavirus Pathogenesis, Advances in Virus Research, Volume 81: 85-164

INDEX OF SYMBOLS

***	Manufacturer		\sum	Contains sufficient for <n> tests</n>	X	Temperature limit
IVD	In vitro diagnostic medical device		\square	Use-by date	2	Do not reuse
(i	Consult instructions for use		LOT	Batch code	REF	Catalogue number
EC REP	Authorized representative in the European Community				سا	Date of manufacture

INDEX OF CONTENTS

SARS-CoV-2 Antigen
Negative Control Swab
Positive Control Swab
Extraction Buffer Tubes
Disposable Swabs
Nasal swabs
Nasopharyngeal Swabs
SARS-CoV-2 Antigen Rapid Test

Selfdiagnostics Deutschland GmbH Deutscher Platz 5D (BioCity)

04103 Leipzig, Germany www.selfdiagnostics.eu leipzig@selfdiagnostics.com Phone +49 341 355 238 511

Number: SAGP0002 Effective date: 8.02.2021

